1,370 research outputs found

    Future constraints on variations of the fine structure constant from combined CMB and weak lensing measurements

    Full text link
    We forecast the ability of future CMB and galaxy lensing surveys to constrain variations of the fine structure constant. We found that lensing data, as those expected from satellite experiments as Euclid could improve the constraint from future CMB experiments leading to a \Delta \alpha / \alpha = 8*10^{-4} accuracy. A variation of the fine structure constant \alpha is strongly degenerate with the Hubble constant H_0 and with inflationary parameters as the scalar spectral index n_s. These degeneracies may cause significant biases in the determination of cosmological parameters if a variation in \alpha as large as \sim 0.5 % is present at the epoch of recombination.Comment: 6 pages, 6 figures, improved text and few typos correcte

    Including birefringence into time evolution of CMB: current and future constraints

    Full text link
    We introduce birefringence effects within the propagation history of CMB, considering the two cases of a constant effect and of an effect that increases linearly in time, as the rotation of polarization induced by birefringence accumulates during photon propagation. Both cases result into a mixing of E and B modes before lensing effects take place, thus leading to the fact that lensing is acting on spectra that are already mixed because of birefringence. Moreover, if the polarization rotation angle increases during propagation, birefringence affects more the large scales that the small scales. We put constraints on the two cases using data from WMAP 9yr and BICEP 2013 and compare these results with the constraints obtained when the usual procedure of rotating the final power spectra is adopted, finding that this dataset combination is unable to distinguish between effects, but it nevertheless hints for a non vanishing value of the polarization rotation angle. We also forecast the sensitivity that will be obtained using data from Planck and PolarBear, highlighting how this combination is capable to rule out a vanishing birefringence angle, but still unable to distinguish the different scenarios. Nevertheless, we find that the combination of Planck and PolarBear is sensitive enough to highlight the existence of degeneracies between birefringence rotation and gravitational lensing of CMB photons, possibly leading to false detection of non standard lensing effects if birefringence is neglected.Comment: 20 pages, 10 figures. New version matching the one accepted by JCAP. Corrected typos in equations 2.17-2.1

    Does Quartessence Ease Tensions?

    Get PDF
    Tensions between cosmic microwave background observations and the growth of the large-scale structure inferred from late-time probes pose a serious challenge to the concordance Λ\LambdaCDM cosmological model. State-of-the-art data from the Planck satellite predicts a higher rate of structure growth than what preferred by low-redshift observables. Such tension has hitherto eluded conclusive explanations in terms of straightforward modifications to Λ\LambdaCDM, e.g. the inclusion of massive neutrinos or a dynamical dark energy component. Here, we investigate models of 'quartessence' -- a single dark component mimicking both dark matter and dark energy -- whose non-vanishing sound speed inhibits structure growth at late times on scales smaller than its corresponding Jeans' length. In principle, this could reconcile high- and low-redshift observations. We put this hypothesis to test against temperature and polarisation spectra from the latest Planck release, SDSS DR12 measurements of baryon acoustic oscillations and redshift-space distortions, and cosmic shear correlation functions from KiDS. This the first time that any specific model of quartessence is applied to actual data. We show that, if we naively apply Λ\LambdaCDM nonlinear prescription to quartessence, the combined data sets allow for tight constraints on the model parameters. Apparently, quartessence alleviates the tension between the total matter fraction and late-time structure clustering, although in fact the tension is transferred from the latter to the quartessence sound speed parameter. However, we found that this strongly depends upon information from nonlinear scales. Indeed, if we relax this assumption, quartessence models appear still viable. For this reason, we argue that the nonlinear behaviour of quartessence deserves further investigation and may lead to a deeper understanding of the physics of the dark Universe.Comment: 8 pages, 6 figures, 1 table; matching published versio

    Reconstruction of the Dark Energy equation of state from latest data: the impact of theoretical priors

    Full text link
    We reconstruct the Equation of State of Dark Energy (EoS) from current data using a non-parametric approach where, rather than assuming a specific time evolution of this function, we bin it in time. We treat the transition between the bins with two different methods, i.e. a smoothed step function and a Gaussian Process reconstruction, investigating whether or not the two approaches lead to compatible results. Additionally, we include in the reconstruction procedure a correlation between the values of the EoS at different times in the form of a theoretical prior that takes into account a set of viability and stability requirements that one can impose on models alternative to Λ\LambdaCDM. In such case, we necessarily specialize to broad, but specific classes of alternative models, i.e. Quintessence and Horndeski gravity. We use data coming from CMB, Supernovae and BAO surveys. We find an overall agreement between the different reconstruction methods used; with both approaches, we find a time dependence of the mean of the reconstruction, with different trends depending on the class of model studied. The constant EoS predicted by the Λ\LambdaCDM model falls anyway within the 1σ1\sigma bounds of our analysis.Comment: 17 pages, 5 figures. Prepared for submission to JCA

    Constraints on cosmological parameters from future cosmic microwave background experiments

    Get PDF
    The Planck satellite experiment will soon let cosmologists to determine most of the cosmological parameters with unprecedented accuracy. In particular a strong improvement is expected in many parameters of interest, including neutrino mass, the amount of relativistic particles at recombination, the primordial Helium abundance and the injection of extra ionizing photon by dark matter self-annihilation. Here we review the constraints achievable by future experiments and discuss the implications for fundamental physics. © 2010 IOP Publishing Ltd

    E-ELT constraints on runaway dilaton scenarios

    Get PDF
    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α\alpha, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., αb=αV∼0\alpha_b=\alpha_V\sim0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., αb≳10−5−αV≳0.05\alpha_b\gtrsim10^{-5}-\alpha_V\gtrsim0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by JCA

    Latest evidence for a late time vacuum -- geodesic CDM interaction

    Get PDF
    We perform a reconstruction of the coupling function between vacuum energy and geodesic cold dark matter using the latest observational data. We bin the interaction in seventeen redshift bins but use a correlation prior to prevent rapid, unphysical oscillations in the coupling function. This prior also serves to eliminate any dependence of the reconstruction on the binning method. We use two different forms of the correlation prior, finding that both give similar results for the reconstruction of the dark matter -- dark energy interaction. Calculating the Bayes factor for each case, we find no meaningful evidence for deviation from the null interacting case, i.e. Λ\LambdaCDM, in our reconstruction.Comment: 14 pages, 7 figures. Version 2 matches published version in Physics of the Dark Universe (Figure 2 updated to better show H0 and sigma 8 tensions, additional discussion of results added in section 4.1
    • …
    corecore